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Clock Genes in Glia Cells:
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Abstract

Circadian rhythms are periodic patterns in biological processes that allow the organisms to anticipate changes in the envir-

onment. These rhythms are driven by the suprachiasmatic nucleus (SCN), the master circadian clock in vertebrates. At a

molecular level, circadian rhythms are regulated by the so-called clock genes, which oscillate in a periodic manner. The protein

products of clock genes are transcription factors that control their own and other genes’ transcription, collectively known as

‘‘clock-controlled genes.’’ Several brain regions other than the SCN express circadian rhythms of clock genes, including the

amygdala, the olfactory bulb, the retina, and the cerebellum. Glia cells in these structures are expected to participate in

rhythmicity. However, only certain types of glia cells may be called ‘‘glial clocks,’’ since they express PER-based circadian

oscillators, which depend of the SCN for their synchronization. This contribution summarizes the current information about

clock genes in glia cells, their plausible role as oscillators and their medical implications.
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Introduction

Most light-sensitive organisms have built-on time-
measuring devices that are commonly known as circadian
clocks. These structures allow them to anticipate day time
and hence to organize their behavior as well as physio-
logical and biochemical processes in a proactive manner.
Circadian rhythms are generated endogenously through
genetic control (King and Takahashi, 2000) in living sys-
tems, ranging from bacteria to humans (Harmer et al.,
2001; Bell-Pedersen et al., 2005); and control vital aspects
of the organism physiology, from sleeping and waking to
neurotransmitter secretion and cellular metabolism. At
the center of these rhythms resides the circadian clock
machinery, an amazingly transcription-translation feed-
back system regulated by a group of genes that oscillate
in a circadian manner, the so-called clock genes. The cir-
cadian system is hierarchically organized, meaning that
while molecular oscillations occur in most cells and tis-
sues of the body, the suprachiasmatic nucleus (SCN)
functions as the master regulator to synchronize the
phase of the other oscillating tissues (Schibler and
Sassone-Corsi, 2002; Hastings et al., 2008). Although

the general consensus of the cellular identity of oscillating
cells in the brain point to neurons, glia cells of different
brain areas have been proposed to act as circadian
oscillators that are dependent on the SCN for their syn-
chronization (Siwicki et al., 1988; Zerr et al., 1990; Ewer
et al., 1992). Nevertheless, despite of the fact that glia
cells have a pivotal role in most of the central nervous
system (CNS) functions, their role in circadian physi-
ology is only begging to be understood. With this in
mind, we discuss here the recent knowledge about clock
genes in glia cells, their plausible role as cellular oscilla-
tors, and their involvement in pathological conditions.
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México.

Email: arortega@cinvestav.mx

ASN Neuro

September-October 2016: 1–13

! The Author(s) 2016

DOI: 10.1177/1759091416670766

asn.sagepub.com

Creative Commons CC-BY: This article is distributed under the terms of the Creative Commons Attribution 3.0 License

(http://www.creativecommons.org/licenses/by/3.0/) which permits any use, reproduction and distribution of the work without further permission

provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).



Circadian Rhythms

The term circadian was introduced by Halberg to describe
the biological rhythms that have a period of approxi-
mately 24 h, namely the circadian rhythms (from the
Latin circa, ‘‘around,’’ and dies, ‘‘day,’’ meaning literally
‘‘about a day’’; Halberg, 1959). Circadian rhythms are
found in every kingdom of life, and in mammals, regulate
a plethora of functions in the organism, including the
rest-activity cycle, daily variations in metabolism and
body temperature, and the rhythmic secretion of hor-
mones (Stratmann and Schibler, 2006).

In higher vertebrates, circadian oscillators exist in the
brain as well as in other organs or tissues (Tosini and
Menaker, 1996; Granados-Fuentes et al., 2006). The
‘‘master clock’’ that coordinates the activities of other oscil-
lators resides in the SCN, which is located in the anterior
hypothalamus and is comprised of a heterogeneous popu-
lation of neurons and relatively understudied glia.
Circadian oscillators in other brain areas or tissues are
called ‘‘peripheral clocks’’ and are under the influence of
the SCN, presumably through combination of neural and
humoral signaling (Balsalobre et al., 2000; Cheng et al.,
2002; Schibler and Sassone-Corsi, 2002; Chung et al., 2011).

The SCN receives photic information from the envir-
onment via neurons transcending from the retina through
the retino-hypothalamic tract (Moore and Lenn, 1972),
which allows the setting of SCN circadian oscillators to
external light cues (Johnson et al., 1988). Particularly, the
surgical ablation of the SCN in mammals causes animals
to become arrhythmic in locomotor activities, endocrine
output, and other biochemical and physiological pro-
cesses (Moore and Eichler, 1972; Stephan and Zucker,
1972; Turek, 1985). Transplantation of SCN tissue to
SCN-lesioned animals restores circadian rhythms with
the period of the donor (Ralph et al., 1990; Sujino
et al., 2003). When isolated in vitro, the SCN continues
to express circadian rhythms in glucose metabolism, gene
expression, and electrical activity similar to the in vivo
scenario (Green and Gillete, 1982; Herzog et al., 1997;
Yamazaki et al., 2000).

Molecular Machinery of Circadian Clocks

The molecular mechanism that generates circadian
rhythms involves the interaction positive and negative
feedback loops of transcriptional or translational pro-
cesses of clock genes (Dunlap, 1999; Harmer et al.,
2001; Reppert and Weaver, 2001). In mammals, two
basic helix-loop-helix transcription factors, Circadian
Locomotor Output Cycles Kaput (CLOCK) and Brain
and Muscle Aryl Hydrocarbon Receptor Nuclear
Translocator-Like Protein 1 (BMAL1), heterodimerize
and subsequently bind to conserved E-box sequences in
target gene promoters. In this manner, this complex

controls the rhythmic expression of mammalian Period
(Per1, Per2, Per3) and Cryptochrome (Cry1, Cry2)
genes (Dunlap, 1999; Reppert and Weaver, 2001). If the
concentration of these proteins is large enough, they
dimerize and inhibit transcription of the genes Per1 y
Per2 interacting with CLOCK and BMAL1. The positive
feedback loop is mediated PER2, regulating Bmal1 tran-
scription; BMAL1 promotes heterodimerization of
CLOCK:BMAL1, so that transcription cycles Per/Cry
can be restarted (Dunlap, 1999; Harmer et al., 2001;
Reppert and Weaver, 2001; Okamura et al., 2002).

Another regulatory loop is mediated by the orphan
nuclear receptors, the Retinoic Acid Receptor-Related
Orphan Receptor �/�/� (ROR �/�/�) and the Reverse
Erb �/� (Rev-erb �/�), that are responsible to activate
and inhibit, respectively, transcription of Bmal1 through
the retinoic acid Receptor Response Element (RRE) in its
promoter, leading it to oscillate in a circadian manner
(Figure 1; Preitner et al., 2002; Sato et al., 2004; Akashi
and Takumi, 2005; Guillaumond et al., 2005).

In addition to the core regulation at the level of tran-
scription or translation, circadian clock proteins are also
subjected to extensive posttranslational modifications
that appear to control their cellular localization, protein
stability, and activity. For example, Casein Kinase I" and
d (CKI"/d) are known to be critical factors that regulate
the turnover of PERs and CRYs in mammals (Akashi
et al., 2002; Eide et al., 2002; Gallego and Virshup,
2007); however, kinase CKI" also activates BMAL1-
mediated transcription (Eide et al., 2002).

Importantly, circadian transcription factors not only
regulate their own transcription but also regulate the
expression of numerous other clock-controlled genes
(CCGs; Dunlap, 1999; Reppert and Weaver, 2001). In
fact, it is currently estimated that approximately 43%
of the mammalian genome is rhythmic, and these CCGs
are involved in a wide array of physiological functions
throughout the body and the brain (Zhang et al., 2014). It
is noteworthy that CCGs are rhythmically regulated by
the circadian clock, but differ from clock genes, in that
their protein products are not essential for function of the
clock. Among the genes that are under circadian regula-
tion included metabolic enzymes, like phosphoenolpyru-
vate carboxykinase (Phillips and Berry, 1970); ion
channels, like cGMP-gated cation channels, various vol-
tage-gated calcium and potassium channels, the Naþ/Kþ-
ATPase, and a long-opening cation channel (Ko et al.,
2009); and peptides, like Arginine-Vasopressin (AVP; Jin
et al., 1999) and DBP (D element-Binding Protein; Le
Martelot et al., 2009).

Glia Cells

In all parts of the nervous system, glia cells outnumber
neurons, and they make up a large part of nervous tissue.
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For instance, it is known that glia cells occupy about half
the volume of the brain. These cells have critical roles in
modulating synaptic transmission, plasticity, and behav-
ior, in addition to their well-characterized functions in
synapse development and neurodegeneration (Jessen
and Richardson, 2001; Jessen, 2004; Stork et al., 2012;
Clarke and Barres, 2013; Brown and Neher, 2014).
However, astrocytes also regulate physiologically
neuronal circuits in the adult brain that control neuronal
excitability, cognitive state (Lee et al., 2014), and
responses to drugs of addition (McIver et al., 2012;
Turner et al., 2013).

The term glia is derived from the Greek word glia,
which literally means ‘‘glue.’’ In 1858, Rudolf Virchow
described to the glia cells as a connective tissue that binds
nervous elements together (Virchow, 1858). Soon after, in
1870s, the cellular nature of glia was firmly established by
Camillo Golgi (1873). The term glia cells denotes in fact a
broad category of cells that is made up of many subtypes;
accordingly, there are three types of glia cells in the
mature CNS: astrocytes, which are important for the
extracellular ion homeostasis, neurotransmitter recycling
of the major excitatory amino acid (Danbolt et al., 2016),
and regulation of complex brain mechanisms, such as

sleep homeostasis (Halassa et al., 2009) and memory
(Newman et al., 2011; Suzuki et al., 2011; Han et al.,
2012; Stehberg et al., 2012); oligodendrocytes, key factors
in neuronal conductivity, and in which their own biology,
myelination, and maintenance of myelin sheaths are very
complex processes (Baumann and Pham-Dinh, 2001;
Barres, 2008; Watkins et al., 2008) that their disturbances
are associated with major diseases of the nervous system;
and finally, microglia cells, the brain-immune cells that
also have relevant roles in the maintenance of neuronal
circuitry, regulation of behavior (Hayashi et al., 2013b),
and functional state of neurotransmission (Hayashi et al.,
2013a). Remarkably, it has also been described that all of
these three types of glia cells also play an important role
in the regulation of circadian rhythms (Prosser et al.,
1994; Li et al., 2002; Matsumoto et al., 2011; Ng et al.,
2011; Fonken et al., 2015).

Clock Genes in Glia Cells

Astrocytes

The biochemical characterization of clock genes has
allowed the identification of brain areas that possess the

Figure 1. Molecular mechanisms of the clock. The mammalian circadian oscillator is composed of an autoregulatory transcriptional

network with two interlocked feedback loops: core and auxiliary. The CLOCK/BMAL1 heterodimer, the integral component of the core

loop, induces E-box mediated transcription of the negative regulators Periods (PERs) and Cryptochromes (CRYs). Accumulated PER and CRY

proteins intensively repress E-box mediated transcription until their levels have sufficiently decreased. Additionally, another regulatory loop

is induced by CLOCK:BMAL1 activating transcription of the nuclear receptors RORa and Rev-erba, which modulate Bmal1 mRNA levels by

competitive actions on the RRE element residing in the Bmal1 promoter. Collectively, the cycling of the clock components also determines

the levels of the clock-controlled genes (CCGs) by transcription via the E-box or RRE to achieve their oscillating patterns and thus to

generate rhythmic physiological output.
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molecular machinery needed for the generation of circa-
dian rhythms. Consequently, daily oscillations in gene
expression of clock genes have been identified in a
number of brain regions (Feillet et al., 2008), including
the cerebellum (Akiyama et al., 1999; Namihira et al.,
1999), amygdala, olfactory bulb, the lateral habenula,
and a variety of nuclei in the hypothalamus (Guilding
and Piggins, 2007). Interestingly in these areas, clock
gene expression is by no means restricted to neurons
but is not uncommon to detect them in the most abun-
dant cell type in the CNS: glia cells, which show circadian
rhythms in vivo and in vitro (Siwicki et al., 1988; Zerr
et al., 1990; Ewer et al., 1992; Yagita et al., 2010; Ng
et al., 2011; Fonken et al., 2015).

The first work to suggest that glia may contain
molecular oscillators was reported in 1990; it was demon-
strated that the canonical clock protein PER was loca-
lized both in neurons and glia cells of the fly brain, and
that it showed robust circadian rhythms and abundance
in both cell types (Zerr et al., 1990). Soon after, using
genetic mosaic analysis, it was reported that certain
weakly rhythmic flies contained detectable PER only in
glia; this was interpreted as an evidence for a role of glial
oscillators in the pacemaker driving rhythmic behavior
(Ewer et al., 1992). Thereafter, other studies in rat and
mouse astroglia demonstrated rhythmic expression of
clock genes in astrocytes, indicating that these cells con-
tain a PER-based molecular oscillator that damps in the
absence of neuronal signals (Prolo et al., 2005; Yagita
et al., 2010). Interestingly, astroglial cultures were cap-
able to display a sustained rhythmicity (7 days or longer)
when cocultured with SCN explants, whereas cortical
explants did not influence rhythmicity (Prolo et al.,
2005); suggesting that a secreted neuronal factor
expressed in the SCN may be required for sustained
rhythms in glia cells.

Several studies have explored the role of the mamma-
lian PER-based oscillator in regulating glial physiology.
Hence, it has been reported that there is a diurnal rhythm
in Glast (glutamate/aspartate transporter) glutamate
(Glu) transporter gene expression and protein amount
within the SCN with the peak protein occurring at the
beginning of the photoperiod in an light:dark (12:12)
cycle, in spite of the fact that it was not determined
whether this rhythm persists or not in conditions of con-
stant darkness or constant light (Spanagel et al., 2005).
Moreover, the observation that GLAST levels do not
show an obvious rhythmicity in Per2 mutant mice sug-
gests the presence of a circadian control (Spanagel et al.,
2005). Years later, it was demonstrated that cultured cor-
tical astrocytes from clock mutant animals have reduced
Glast mRNA and protein levels (Beaulé et al., 2009).
These results suggest that the vast majority of Glu
uptake activity (glial) is a function of the transcription
factors Clock and NPAS2 and of the transcriptional

regulator Per2 (Beaulé et al., 2009). Such dependence
could be explicated by the involvement of CLOCK and
NPAS2 in Glast transcription indirectly or in GLAST
protein stability or localization (Danbolt, 2001).
Beaulé’s study in 2009 also showed that despite of the
presence of circadian rhythms in Per gene expression in
cultured astroglia, no evidence was found for circadian
changes in Glu uptake; so that a noncircadian role for
clock proteins might be involved in the regulation of
Glast gene transcription or Glast mRNA translation
and stability (Beaulé et al., 2009). Accordingly,
Morioka et al. (2012) reported no circadian-mediated
GLAST expression in mice spinal cord; however, both
of these conflicting results could be explained in terms
of a differential tissue regulatory mechanisms of circa-
dian-controlled molecules expression (brain vs. spinal
cord) and even a loose of molecular components of the
glia clock in cultured astrocytes.

Regarding Glu, it is known that this neurotransmitter
participates in photic entrainment of circadian rhythms,
so it is important to mention that Glu regulates the clock
protein BMAL1 in primary cultures of chick cerebellum
Bergmann glia cells. In that study, a Glu-driven dose and
time-dependent BMAL1 increased expression was
reported, being this phenomena the result of a stabiliza-
tion of the protein after it has been phosphorylated by
PKA or PKC kinases; pointing out that Glu is critically
involved in glia BMAL1 expression that these cells are
important in the control of circadian rhythms in the cere-
bellum (Chi-Castañeda et al., 2015).

Another important finding is the discovery of high-
amplitude daily rhythms in the distribution of glial fibril-
lary acidic protein (GFAP, a specific astrocyte marker in
the adult brain) in astrocytes of the SCN (Lavialle and
Serviere, 1993). These rhythmic patterns persist in con-
stant darkness in the SCN of hamsters, rats, and mice
(Lavialle and Serviere, 1993; Moriya et al., 2000) suggest-
ing that these rhythms are intrinsic and independent of
external light cues. Although, the role of daily oscillations
in GFAP immunoreactivity is unknown, it has been seen
noticed that mice lacking the Gfap gene show impaired
long-term depression in the cerebellum, as well as reduced
eyeblink conditioning (Shibuki et al., 1996), indicating
that GFAP in glia cells has some role in regulating neur-
onal function. Subsequently, Leone et al. (2006) demon-
strated a daily variation of GFAP in the mouse SCN;
however, the authors suggested that these oscillations
reflect a response of astrocytes in the SCN to inputs
from the immune system via signaling through the
immune-related transcription factor nuclear factor-kB
(NF-kB).

Astrocytes communicate with nearby neurons by a
process known as gliotransmission (Haydon, 2001;
Fields and Burnstock, 2006; Perea et al., 2009), being
adenosine triphosphate (ATP) and Glu, the best known

4 ASN Neuro



transmitters released by these cells (Parpura and Zorec,
2010). In vivo, circadian rhythms in ATP release appear
to derive primarily from astrocytes within the SCN
(Womac et al., 2009). The mechanisms responsible for
generating ATP oscillations in SCN cells and cortical
astrocytes are unknown; however, calcium-dependent sig-
naling is likely to be involved in extracellular ATP accu-
mulation and its circadian profile (Womac et al., 2009).
The functional implications of extracellular ATP rhythms
have not been described yet, but probably this nucleotide
participates in intracellular signaling between circadian
oscillators in the SCN and other brain regions. More
recently, it was demonstrated that astrocytes display
daily extracellular ATP oscillations that depend on key
clock genes (Clock, Per, and Bmal1) and inositol triphos-
phate (IP3) signaling (Marpegan et al., 2011). Thus, these
results indicate that extracellular ATP levels are aug-
mented at specific times of day and suggest a clock-
induced increase in energy metabolism and glia activity,
which may participate in sleep-wake changes in the brain
(Marpegan et al., 2011). Remarkably, astrocytes in the
SCN respond to photic stimulation with an increase in
FOS expression (Bennett and Schwartz, 1994), suggesting
their involvement in the response to light and, possibly,
entrainment. Moreover, cultured astrocytes respond to
nanomolar concentrations of vasoactive intestinal poly-
peptide (VIP) with clock gene induction, ATP release,
and shifts in their circadian rhythms (Marpegan et al.,
2009; Marpegan et al., 2011).

Subsequently, it was proved that glia cells of the adult
brain could physiologically modulate circadian neuronal
circuitry and behavior through glia calcium signaling
(Ng et al., 2011). Genetic manipulations of glia vesicle
trafficking, the membrane ionic gradient, or internal
calcium stores all lead to arrhythmic locomotor activity
in Drosophila, in which a single type of glia cells, the
astrocytes, are relevant for the circadian modulation of
behavior; thereby, glia Ca2þ signaling is critical for the
modulation of the neuronal circadian circuitry (Ng et al.,
2011). It should be noted that the Drosophila astrocytes
and mammalian brain are remarkably similar in regard to
their morphology and molecular signatures, further sug-
gesting a conservation of function.

It has been also demonstrated that spinal cord
circadian expression of clock genes is dependent of the
activity of astrocytes, suggesting the involvement of cir-
cadian rhythmicity in various spinal functions, including
nociception (Morioka et al., 2012). Therefore, the inten-
sity or presence of pathological pain and the efficacy of a
certain pain treatment could vary significantly depending
on the time of day. Moreover, a circadian oscillation
Glutamine synthetase (GS) mRNA in the spinal cord
was also documented; being this relevant for the Glu-
Glutamine metabolic cycle, and the amount of Glu
repackaged in the primary efferent neuron terminals

located in the dorsal horn of spinal cord may change
within a day (Morioka et al., 2012).

Microglia

The discovery about a molecular clock in the microglia is
relatively recent. Hayashi et al. (2013b) reported the first
evidence that cortical microglia contain an intrinsic
molecular clock, which regulates diurnal changes of its
morphological aspect. Microglia, in contrast to astro-
cytes, regulates the sleep–wake cycle-dependent changes
in synaptic strength through the extension and retraction
of their processes (Hayashi et al., 2013a). Cortical
microglia exhibits a circadian expression of Cathepsin S
(CatS), a microglia-specific lysosomal cysteine protease in
the brain, which is regulated by CLOCK-BMAL1-driven
transcriptional negative feedback loops. Interestingly,
when CatS suffers a disruption induces hyperlocomotor
activity due to failure to downscale the synaptic strength
during sleep, which is necessary for the acquisition of
subsequent novel information after waking (Hayashi
et al., 2013b); therefore, it is possible that dysfunction
of the microglial intrinsic circadian clock could play a
causative role in neuropsychiatric disorders based on
sleep disturbance, including depression and cognitive
impairment (Bhattacharjee, 2007; Hayashi et al., 2014).

Recently, it was reported that microglia possess
circadian clock mechanisms and display rhythmic fluctu-
ations in basal inflammatory gene expression (including
IL1b, TNFa, IL6, and IL1R1) as well as inflammatory
potential, in which time-of-day differences in microglia
priming appear functionally relevant as they are reflected
in circadian differences in sickness response (Fonken
et al., 2015). Of relevance is to note that rhythms in
microglia oscillate in the absence of glucocorticoids, so
that one limitation is the isolating microglia only 24 hr
after corticosterone removal does not eliminate possible
priming effects of glucocorticoids (Frank et al., 2014);
since glucocorticoids can phase shift peripheral circadian
clock (Sujino et al., 2012).

Oligodendrocytes

This type of cell is the least studied of the three kinds of
glia cells. To date, there is no report showing that oligo-
dendrocytes have an internal circadian clock; however,
the information indicates that clock genes might regulate
oligodendrocytes precursor cells (OPCs) proliferation in
the hippocampus (Matsumoto et al., 2011). The OPCs
give rise to mature oligodendrocytes, which contribute
to axonal myelination and to mature neurons in the piri-
form cortex in the adult rodent brain (Dimou et al., 2008;
Rivers et al., 2008); therefore, oscillatory proliferation of
OPCs might have great impact on hippocampal function
because OPC proliferation itself, in response to neuronal
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activity, may eventually modulate the synaptic plasticity
for the hippocampus.

Clinical Implications

It has been documented that glia cells are involved in
most types of brain pathologies from acute lesions to
chronic neurodegenerative processes and psychiatric dis-
eases. With this in mind and regarding to clock genes, it
is known that absolute expression levels of these genes
are modulated under pathological conditions (Aston
et al., 2004; Benedetti et al., 2008; Beaulé et al., 2009;
Soria et al., 2010; Gu et al., 2015). Specifically, a non-
functional Per2 gene leads to GLAST reduced expres-
sion and as consequence Glu uptake is diminished and a
hyperglutamatergic state is triggered (Spanagel et al.,
2005; Yuferov et al., 2005). Astrocytic Glu release has
clear pathophysiological implications, ranging from
ischemic lesion such as stroke, to white matter injury
through demyelinating disorders like multiple sclerosis,
and to dementias such as Alzheimer’s and Huntington
diseases (Domingues et al., 2010). Moreover, laboratory
studies have shown that Glu also modulates the levels of
dopamine and other neurotransmitters and neuropeptides
that mediate both positive and negative aspects of drug
reinforcement and reward. Both hyper- and hypogluta-
matergic states in specific brain regions are associated
with different stages of addiction, including development,
persistence, and abstinence. Interestingly, clock genes
seem to be involved in the modulation of common mech-
anisms of drug abuse-related behaviors (Yuferov et al.,
2003). Notably, haplotypes of the Per2 gene have been
associated to the amount of alcohol consumption in alco-
holic patients, suggesting that altered function in this
gene leads to changes in alcohol reinforcement processes
(Spanagel et al., 2005).

In relation with Per1, Per3, and Bmal1, alterations in
these genes result in reactive oxygen species imbalance
and chronic oxidative stress in the brain, modifications
in both short- and long-term memory, as well as associ-
ation with diverse psychiatric diseases like schizophrenia,
Parkinson, bipolar disorder, and Alzheimer (Aston et al.,
2004; Nievergelt et al., 2006; Benedetti et al., 2008;
Mansour et al., 2009; Krishnan et al., 2009; Gerstner,
2010; Gu et al., 2015; Song et al., 2015). However, a
single clock gene is not related with a particular medical
condition, but it has been reported that a single clock
gene can have different repercussions on health, and sev-
eral clock genes may be related to the same pathology.
Such is the case of the clock genes Npas2, Gsk3�, Dbp,
Cry1, and Clock that are also implicated in psychiatric
diseases (Niculescu et al., 2000; Bhat and Budd, 2002;
Johansson et al., 2003; Takano et al., 2004; Roybal
et al., 2007; Soria et al., 2010; Geoffroy et al., 2015) as
well as in other brain pathologies (Table 1).T
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Particularly, the disturbances in sleep parameters have
received limited attention in spite of the fact that they are
associated with a spectrum of neurological and psychi-
atric disorders. We know that sleep patterns are affected
not only by independent homeostatic mechanisms that
determine the amount of sleep required (Borbely and
Achermann, 1999) but also by circadian timing mechan-
isms. Accordingly, mutations in clock genes, including
Clock, Bmal1, and Cry1/2, result in alterations in sleep
time, sleep fragmentation, and atypical responses follow-
ing sleep deprivation (Naylor et al., 2000; Wisor et al.,
2002; Laposky et al., 2005).

However, these sleep disruptions also have profound
effects in the immune system altering the number of

circulating lymphocytes, natural killer cells, antibody
titers, and levels of cytokines (Meier-Ewert et al., 2004;
Vgontzas et al., 2004; Everson, 2005; Hui et al., 2007)
that translate into impaired immune function when an
immune challenge is presented (Irwin et al., 1996; Born
et al., 1997). The importance of the immune cells lies in
that they exhibit circadian expression of clock genes
which in turn are involved in regulating immunological
activities. For example, Rev-erb gene represses macro-
phage gene expression (Lam et al., 2013) and targets
inflammatory function of macrophages through the
direct regulation of Ccl2 (Sato et al., 2014).
Additionally, Bmal1 controls rhythmic trafficking of
inflammatory monocytes to sites of inflammation

Figure 2. Model of a glutamatergic synapse and the molecular circadian clockwork. In the presynaptic neuron, glutamine (Gln) is

converted to glutamate (Glu) by Glutaminase and packaged into synaptic vesicles by the vesicular glutamate transporter (VGluT). After

its release into the extracellular space, Glu binds to ionotropic glutamate receptors (NMDAR and AMPAR) and metabotropic glutamate

receptors (mGluRs) in the membranes of postsynaptic neuron and glia cells. Later, Glu is cleared from the synaptic space through

excitatory amino acid transporters (EAATs) on neighboring glia cells (GLAST); this Glu uptake leads to Naþ influx, which activates the

Naþ/Ca2þ exchanger, increasing intracellular Ca2þ levels. Within the glia cell, Glu is converted to Gln by Glutamine synthetase and the Gln is

subsequently released by system N sodium-coupled neutral amino acid transporters (SNAT3/5) and taken up by neurons through system A

transporters (SNAT1/2) to complete the Glu-Gln cycle. Interestingly, Glu plays an important role in circadian rhythms since they express

molecular oscillators. Glu activates NMDAR-induced Ca2þ influx, which together with other second messengers triggers the activation of

diverse signal transduction cascades, including calmodulin kinase II (CaMKII) activity and cAMP-dependent protein kinase (PKA). Although

the cross talk between these diverse cascades is not currently well known, it is plausible that a common mechanism involved in this

pathway is the phosphorylation of the cAMP response element binding protein (CREB). In turn, pCREB activates Per1 and Per2 transcrip-

tion (these genes are also activated by CLOCK/BMAL1 binding to E-box). Circadian transcription factors also regulate the expression of

numerous proteins, molecules, and second messengers, including GLAST, GFAP, ATP, and Ca2þ. Solid lines represent mechanisms that have

been described experimentally, and dashed lines indicate possible additional links of this pathway. AMPAR, a-amino-3-hydroxy-5-methyl-4-

isoaxazolepropionate receptor; ATP, adenosine triphosphate; BMAL1, brain and muscle ARNT-like protein 1; CaM, calmodulin; cAMP,

cyclic adenosine monophosphate; CCGs, clock-controlled genes; CLOCK, circadian locomotor output cycles kaput; Cry, cryptochrome;

GFAP, glial fibrillary acidic protein; GLAST, glutamate aspartate transporter; NMDAR, N-methyl-D-aspartate receptor; Per, period.
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(Nguyen et al., 2013). Hence, circadian disruptions
exacerbate inflammatory responses in both periphery
(Castanon-Cervantes et al., 2010) and CNS (Fonken
and Nelson, 2013).

It is noteworthy that, in relation with microglia cells, it
has been reported that abnormal microglia has a signifi-
cant association with neurological disorders (Saijo and
Glass, 2011; Louboutin and Strayer, 2013; Nakagawa
and Chiba, 2015), and dysfunction of the clock system
is one of the risk factors for the psychiatric diseases;
therefore, the microglia clock may provide valuable tar-
gets for the development of novel therapeutic agent for
the neurological disorders, and further research on this
topic will aid in understanding the function and dysfunc-
tion of the brain.

Conclusion

The presence of clock genes in glia cells has great import-
ance for maintaining the homeostasis of the various func-
tions performed by these cells (Figure 2). Due to the
nature of glia cells, most of the changes reported by alter-
ations in the expression of clock genes lead to problems
related to imbalance of the glutamatergic system, leading
to severe pathophysiological scenarios. Future work
should focus on the role of glia in different aspects of
circadian behavior and medical implications that could
strengthen for our understanding the role of glia cells in
brain physiology.
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