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Glutamatergic transmission in the vertebrate brain requires the involvement of glia cells, in a continuous molecular dialogue. Glial
glutamate receptors and transporters are key molecules that sense synaptic activity and by these means modify their physiology
in the short and long term. Posttranslational modifications that regulate protein-protein interactions and modulate transmitter
removal are triggered in glial cells by neuronal released glutamate. Moreover, glutamate signaling cascades in these cells are linked
to transcriptional and translational control and are critically involved in the control of the so-called glutamate/glutamine shuttle
and by these means in glutamatergic neurotransmission. In this contribution, we summarize our current understanding of the
biochemical consequences of glutamate synaptic activity in their surrounding partners and dissect the molecular mechanisms that
allow neurons to take control of glia physiology to ensure proper glutamate-mediated neuronal communication.

1. Introduction

Glutamate (Glu) the main excitatory neurotransmitter in the
nervous system requires the involvement of neurons and glia
cells to elicit its function as a neurotransmitter in an example
of what is nowadays known as a tripartite synapse. Although
detailed analysis of neuronal consequences of Glu exposure is
regularly reviewed [1–3], the cellular andmolecular impact of
Glu in glia cells and its outcome in terms of synaptic commu-
nication are much less considered. Traditionally, it has been
thought that Glu ejects its functions through the activation of
specific membrane receptors classified in two main groups:
ionotropic (iGluRs) and metabotropic (mGluRs). However,
recent findings suggest the participation of Glu transporters
in the signaling transactions triggered by this amino acid.
Needless to say, both receptors and transporters are expressed
in glia cells.

In the following sections, an insight into the signaling
strategies used by this amino acid that end up into an efficient
neuronal communication by means of altering the glial pro-
teome is summarized and discussed.

2. Glutamate Receptors

Based on the sequence and transduction similarities, two
main subtypes ofGlu receptors have been defined: iGluRs and
mGluRs. iGluRs are ligated-coupled ion channels that were
originally classified according to their pharmacological pro-
file into 5-methyl-4-isoxazole propionate (AMPA), kainate
(KA), and N-methyl-D-aspartate (NMDA) receptors [4]. In
terms of their molecular structure, each of these subtypes
is composed of four subunits encoded by different genes.
AMPA receptors are composed of different combinations
of GRIA1 (GluA1), GRIA2 (GluA2), GRIA3 (GluA3), and
GRIA4 (GluA4). Each combination displays different cation
channel properties; for instance, the sole presence of one
GluA2 subunit favours Na+ permeability. AMPA receptors
lacking the GluA2 subunit are Ca2+-permeable [5], like
those expressed in radial glia cells [6, 7]. KA receptors are
composed of four subunits out of GluK1-5. While AMPA and
KA receptors are homo- or heterooligomersNMDAreceptors
are formed as heteromers since in order to be functional
they must contain at least one GluN1 subunit, with the other
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Table 1: Glial glutamate receptors. Summary of described glial glutamate receptors.

Glu receptor Preparation Reference
AMPA/KA without GluA2 BGC [7, 11, 13]
AMPA Oligodendrocytes precursor cells (OPCs) [28, 29]
AMPA/KA Cortical astrocytes [30, 31]
AMPA/KA Oligodendrocytes [32]
GluA1, A2, A3, A4 Astrocytes isolated from CA1 region [33]
GluA4, GluK5 Perivascular astrocytic processes [34]
GluA2, A3, A4, A5, GluK1, K2 Microglia [35]
KA Ca2+-permeable receptors Glial cells of mouse hippocampal slices [36]
KA Ca2+-permeable receptors BGC [7]
GluK1, K2 Astrocytes and oligodendrocytes [37]
GluN1 Müller glial cells [38]
GluN1, N2A, N2B Cortical astrocytes [39–41]
GluN1, N2A, N2B BGC [42]
GluN1, N2A, N2B, N2C, N2D, N3A, N3B Human primary astrocytes [43]

NMDA OPCs, immature and mature oligodendrocytes in the white matter of
cerebellum and corpus callosum [44, 45]

AMPA, KA, NMDA Glial cells in rat spinal cord slice [46]
mGluR 5 Astrocytes [47, 48]
mGluR 2, mGluR 3 Glial cells in several regions of the brain [49, 50]
mGluR groups I and II Human astrocytes [51]
mGluR groups I, II, and III OPCs and oligodendrocytes [52]
mGluR Microglia [47, 53, 54]

subunits of the channel being GluN2A-D or GluN3A-B sub-
units.Themolecular diversity of these receptors is enormous,
sincemost of these ionotropic subunits undergo RNA edition
as well as splicing [8].

In contrast, mGluRs are members of class C of G-protein
coupled receptors (GPCR) and had been classified based on
sequence homology, G-protein coupled and pharmacology
in three groups. Group I is comprised of mGluR 1 and
mGluR 5 and is coupled to stimulation of phospholipase
C with the consequent release of intracellular Ca2+, group
II contains mGluR 2 and mGluR 3 and is coupled to
adenylate cyclase inhibition, and group III consists of mGluR
4, mGluR 6, mGluR 7, and mGluR 8; as group II, group
III is also linked to adenylate cyclase inhibition. These three
groups are activated by specific agonist: for group I (RS)-
3,5-dihydroxyphenylglycine (DHPG) and for group II (S)-
4-carboxy-3-hydroxy-phenylglycine (S)-4C3HPG, while for
group III L-(+)-2-amino-4-phosphonobutyric acid (L-AP4)
[9].

3. Glial Glu Receptors

Glial cells express different types of Glu receptors depend-
ing on the brain region and the differentiation stage [10].
For example, AMPA receptors are expressed in astrocytes
throughout the entire brain; however, their properties dif-
fer due to the differential GluA subunits expression. In
cerebellum, retina, and brainstem, glial AMPA receptors

lack GluA2 subunit; therefore, these channels are Ca2+-
permeable (Table 1) [11–14]. AMPA-mediated Ca2+ influx has
an important role in glial metabolism and structure. It has
been demonstrated that AMPA receptors regulate the protein
repertoire in Bergmann glial cells at transcriptional and
translational levels, as will be discussed more broadly ahead
[15–17]. Moreover, when Bergmann glia AMPA receptors
are rendered Na+-permeable, their fusiform morphology
changes through the retraction of the glial processes [18].

In contrast, although the transcripts and protein of vari-
ous KA receptors subunits have been described in glial cells,
no functional evidence of these receptors has been reported
[19]. It has been speculated that KA receptors also participate
in glial response to Glu since an increase of GluKs subunits
expression is present in reactive astrocytes (Table 1) [20].

The expression of the seven known NMDA subunits has
been demonstrated in glial cells (Table 1) [21–23], and glial
NMDA receptors have peculiarities compared with neuronal
NMDA receptors; glial NMDA receptors present a very weak
Mg2+ blockage and a lower Ca2+ permeability [19, 24, 25].

In glial cells, mGluRs are also present; in fact astrocytes
express all of the described subtypes, and mGluRs 1 and 5
from group I are linked to the activation of phospholipase
C, while mGluRs 2 and 3 from group II and mGluRs 4,
6, 7, and 8 from group III are coupled to the inhibition of
adenylate cyclase (Table 1) [26]. Calcium waves derived from
stimulation of mGluR group I in glial cells have been shown
and are considered as an important mechanism for Glu-
dependent intracellular Ca2+ regulation in glial cells [27].
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Table 2: Glutamate transporters in glial cells. Summary of glutamate transporters described thus far.

Glu transporter Preparation Reference
GLAST/EAAT 1 Human cerebellar mRNA [55, 56]
GLAST/EAAT 1 BGC [57–59]
GLAST/EAAT 1 Müller glial cells [60–63]
GLAST/EAAT 1 Activated microglia [64]
GLT-1a and GLT-1b/EAAT 2 Astrocytes [57, 65–67]
GLAST/EAAT 1, GLT-1/EAAT 2 Oligodendrocytes [68–71]
GLT-1/EAAT 2 Microglia [72]
EAAC1/EAAT 3 Astrocytes of the cerebral cortex [73]
EAAC1/EAAT 3 OPCs [69]
EAAC1/EAAT 3 Oligodendrocytes [70]
EAAC1/EAAT 3 NG2+ cells [74]
VGLUT 1 Astrocytes in culture [75, 76]
VGLUT 2 Astrocytes in culture [75]
VGLUT 2 and VGLUT 3 Astrocytes of the cortex and caudate-putamen [77]

4. Membrane Glu Transporters

Glu extracellular levels are tightly regulated by a family of
Na+-dependent Glu transporters known as excitatory amino
acid transporters (EAATs) [78]. Five subtypes of Glu trans-
porters have been characterized thus far and have been
named EAATs 1–5. While EAAT 1 and EAAT 2 are regarded
as glia specific, EAATs 3, 4, and 5 are present in neurons.
The glial transporters EAAT 1, also known as Na+-dependent
Glu/aspartate transporter (GLAST), and EAAT 2 (Glu trans-
porter 1 (GLT-1)) are responsible of approximately 80–90%
of Glu uptake activity in the brain [79], reflecting not only
that glia cells outlast neurons in a 1 : 10 proportion, but also
that these proteins are profusely expressed in glia cells. The
neuronal transporters EAATs 3–5 have a more restricted
distribution, EAAT 3 is expressed mainly in hippocampal
neurons, and EAAT 4 is present in Purkinje cells in the
cerebellum while EAAT 5 has been found in retina [78].
It should be noted, however, that EAAT 2 expression in
neurons and EAAT 4 presence in astrocytes have also been
documented [78, 80].

Glial Glu transporters are abundant; in fact it has been
calculated that GLT-1/EAAT 2 represents 2% of total brain
protein. While GLAST/EAAT 1 is preferentially expressed in
cerebellum, retina, and olfactory bulb, GLT-1 is abundant in
all other brain areas.During development,GLAST is themost
abundant glial Glu transporter, and as such it has been widely
used as a glial marker in numerous ontogeny studies (Table 2)
[78].

These transporters have been traditionally implicated
in Glu turnover through the so-called Glu/glutamine (Gln)
shuttle. Once this amino acid is removed from the synaptic
space, it is rapidly converted to Gln through the action of
Gln synthetase [81, 82]. Sodium-dependent neutral amino
acid transporters (SNATs) mediate both the glial release and
the neuronal uptake of Gln, which once in the neuronal
compartment is deaminated to regenerate Glu that is charged

into the synaptic vesicles due to the action of the vesicular
transporters (VGLUT).

A biochemical and physical coupling of GLAST with
SNAT 3 was found in Bergmann glial cells, and we could
demonstrate that the Na+ influx through GLAST activity
is coupled to the Gln release mediated by SNAT 3 [83];
these results suggest that glial cells surrounding glutamatergic
synapses sense neuron-derived Glu to promote a more effi-
cient Glu recycling and in consequence an enhanced neu-
ronal communication.

Recent evidences suggest that Glu transporters might
also participate in the signaling transactions triggered by
this amino acid. More than two decades ago, Amara and
coworkers demonstrated a Glu-dependent Ca2+ influx via an
unconventional mechanism that involved Glu transporters
rather than Glu receptors in pituitary GH3 cells [84]; later on,
different groups reported that Glu transporters translocation
to the plasma membrane is regulated by the transporter itself
[85, 86].These findings added a novel regulatory mechanism
for EAATs, recently expanded to include the membrane
diffusion of the transporters which has been shown tomodify
the kinetics of excitatory postsynaptic currents [87].

In this context, Glu transporters have receptor-like prop-
erties; for example, in rat cortical astrocytes, L-Glu, D- and
L-Aspartate, and transportable Glu uptake inhibitors increase
p42/44MAPK phosphorylation [88]. Glu transporters activity
also impacts the PI3K/Akt/mTOR pathway, an important
mechanism to regulate protein synthesis after glutamatergic
stimulation [89, 90]. It also has been reported that Glu
transporters have physical interaction with Na+/K+-ATPase
and operate as a functional macromolecular complex to
regulate glutamatergic neurotransmission [91–93].

5. Vesicular Glu Transporters

While theGlu release by glial cells has beenwell documented,
themechanisms involved in this release are still controversial.
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One of the proposed mechanisms is the activation of the
reversal mode of EAATs [94]; the other one is the Glu vesicle-
mediated, Ca2+-dependent release [95].

Three isoforms of vesicular Glu transporters (VGLUTs 1,
2, and 3) have been cloned and characterized in the brain;
these isoforms have differential distribution and distinct
roles, as expected [96, 97]. The expression of VGLUTs in
neurons is well documented [97, 98]; however their presence
in glial cells is still under discussion.

The first report of the presence of functional VGLUTs
in glial cells was shown in 2004 (Table 2) [75]. Using rat
visual cortex, cultured astrocytes these authors suggest the
expression ofVGLUTs based on the fact that pharmacological
inhibition of VGLUTs reduces a Ca2+-dependent exocytosis
Glu release from astrocytes. Moreover, VGLUT 3 overexpres-
sion results in an enhanced Ca2+-dependent Glu release [99].
It is important to mention that the biochemical machinery
(for example, synaptobrevin II), needed for a vesicular Glu
release has also been detected in cultured astrocytes [100]. A
stimulus and Ca2+-dependent Glu release has been reported
[101] favouring the idea of gliotransmitters regulated release.
There are different subtypes of vesicles storing amino acids,
peptides, and ATP in astrocytes. Despite these findings, a
biochemical evidence of the VGLUTs expression in glial
cells is still absent; Li and collaborators evaluated VGLUTs
expression usingWestern blots and single-vesicle imaging by
total internal reflection fluorescence microscopy concluding
that their findings could not support an irrefutable evidence
of VGLUTs expression in glial cells [102]. In this scenario,
the molecular mechanisms involved in Ca2+-dependent Glu
release are uncertain.

6. Glu-Dependent Gene Expression
Regulation in Glia Cells

6.1. Transcriptional Control. The ability of glial cells tomodify
their transcriptional profile in response to Glu was one of
the first questions asked after the expression of functional
Glu receptors was fully characterized [103]. The increase in
intracellular Ca2+ associated with Glu exposure in a plethora
of glia cells preparations led to the search of the expression
and DNA binding of several transcription factors such as
Fos, Jun, and the cAMP response element-binding protein
(CREB) [104–106]. The identification and characterization
of downstream genes regulated by Glu in glia cells have
started to emerge and systematic transcriptional studies have
also been undertaken, for example, in Bergmann glia [107].
The overall picture is that the transcriptional pattern upon
Glu stimulation varies from different glia subtypes, and in
that sense the signaling cascade that regulates such effect is
specific [108, 109].

6.2. Translational Control. Translation represents the final
step in gene expression regulation. Translational control
offers the advantage of rapid response to external stimulus to
change gene expression profiles without the requirement of
mRNA synthesis and transport. Protein synthesis is the most

energy demanding process in cell physiology and given the
fact that glia cells that surround glutamatergic synapses are
engaged in Glu removal, a biochemical phenomenon that
relies on the activity of the Na+/K+-ATPase, the idea that
Glu could regulate protein synthesis has long been attractive.
Indeed, Glu induces a biphasic effect in overall protein
synthesis in cultured Bergmann glia [110]. Glu treatment
modifies [35S]-methionine incorporation into newly synthe-
sized polypeptides in a time dependent event marked by a
decrease in [35S]-methionine incorporation 15min after Glu
exposure, but after 30min this phenomenon starts to revert,
returning to basal levels after 120min. The ribosomal transit
time (RTT), meaning the average time that a cell takes to
synthetize a polypeptide [111], is augmented 7-fold in Glu-
treated cultured Bergmann glia, event that is reverted after
120min [112].

Translational control is mainly mediated by phosphory-
lation of several components of the translational machinery
[113]. The initiation phase is a recurrent target of regulation,
through the posttranslational modification of eukaryotic
initiation factors (eIFs). The initiator methionyl-tRNA is
conveyed to the ribosome assembly by eukaryotic initiation
factor 2 (eIF2) complexed with GTP. The conversion of
inactive eIF2-GDP to active eIF2-GTP by eIF2B is regulated
by phosphorylation. eIF2 has three subunits (!, ", and#). Glu exposure leads to serine 51 eIF2! phosphorylation,
modification that converts eIF2 from a substrate to a com-
petitive inhibitor of eIF2B [114]. This phosphorylation does
not inhibit the general function of eIF2 but renders the
protein defective in recycling, resulting in the inhibition of
the initiation phase of protein synthesis.

Glu exposure also regulates translation elongation, again,
decreasing protein synthesis by the inhibition of the ribo-
somal translocation. It should be noted that regulation of
elongation process is indicative of a transient effect since
the mRNA remains attached to the ribosomes allowing an
immediate reinitiation of the translation process, as shown
in Bergmann glia [110].

In summary, a cascade of phosphorylation/dephosphor-
ylation of translation factors is involved in the Glu biphasic
translational control in cultured Bergmann glia. Exposure to
this excitatory amino acid reduces in the first 15min [35S]-
methionine incorporation into trichloroacetic acid- (TCA-)
precipitable polypeptides. Thereafter, a gradual recovery in
protein synthesis starts, and after 120min, the translation
process has returned to control levels, suggesting that Glu
regulates both translation initiation and elongation. Indeed,
phosphorylation of the eIF2! is presentafter 10min Glu
exposure [115]. Glu also regulates the phosphorylation of
eukaryotic elongation factor 2 (eEF2) via AMPA and KA
receptors at this time frame [15]. Both phosphorylation events
(eIF2! and eEF2) are time dependent events, with a kinetics
that matches the downregulation of the protein synthesis
upon Glu.

The recovery phase of protein synthesis in Glu exposed
cells involves an increase in the mechanistic target of
rapamycin (mTOR) phosphorylation [17, 90]; this protein
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is thought to act as a check point that regulates cellular
translational capacity since this kinase is capable of transduc-
ing extracellular growth factors signals and by these means
regulating translation. Once activated (phosphorylated) this
kinase favours eukaryotic elongation factor 1A (eEF1A)
phosphorylation, needed for translation reinitiation. After
60min of Glu exposure, an increase of eukaryotic elongation
factor 2 kinase (eEF2K) phosphorylation is present [15].
eEF2K phosphorylation is carried out by p90RSK and by
p70S6K inhibiting its activity and therefore reducing eEF2
phosphorylation levels favouring ribosomal translocation
and protein synthesis reinitiation.

6.3. Physiological Consequences of Glutamate-Dependent Pro-
tein Synthesis Regulation. Glu biphasic effect in protein syn-
thesis is clear; but what is the physiological importance of this
regulation? It is tempting to speculate the downregulation of
protein synthesis as a consequence of a massive Glu exposure
of glia cells surrounding glutamatergic synapses with the
expected metabolic stress of the removal of the neurotrans-
mitter from the synaptic cleft. It is important to mention that
Glu concentration can reach a 0.1mM concentration, well
above of the $! of the glial transporters, which is around
30 %M [28]. Therefore a strict coupling with the Na+/K+-
ATPase is present [92, 93]. It is clear then that under periods
of sustained synaptic activity glial cells reduce their protein
synthesis, in order to restore theNa+ gradient compulsory for
neurotransmitter uptake. Besides theGlu uptake, its recycling
also consumes energy. Neuronal Glu pools are replenished
through the Glu/Gln shuttle [116].

The reduction of the overall elongation process is fre-
quently linked to the translation of mRNAs with complex
structures in their 3" and 5" untranslated regions (UTRs).
Since translation initiation factors are accumulated and can
interact with complex UTRs, in this scenario, Glu also has an
important role in the regulation of the translation of specific
mRNAs. One of the targets of this type of regulation is the
Gln synthetasemRNA, and the interruption of the elongation
process favours the translation of Gln synthetized mRNA
needed for the referred shuttle [117].

7. Astrocyte-Neuron Lactate Shuttle

More than twenty years ago new evidences of another role
of glial cells emerged, the astrocyte-neuron lactate shuttle
(ANLS) [118]. As has been mentioned before, Glu uptake
increases Na+ intracellular concentrations leading to the acti-
vation of Na+/K+-ATPase forming part of a macromolecular
complex. The consumption of ATP activates glycolysis, with
the consequent glucose utilization and lactate production.
Lactate is released through the action of monocarboxylate
transporters (MCT) 1 and 4 that are present in glial cells;
once released, lactate is taken up by neurons through MCT
2 and used as an energy substrate. In this scenario glial cells
have mainly glycolytic metabolism while neurons display an
oxidative metabolism [119].

Although at the beginning this model raised controver-
sies, genomic and metabolic approaches have shed some
light on its importance and it is now well accepted. There
are enough evidences of a metabolic compartmentalization
between glial cells and neurons; first, Glu treatment in glial
cells enhances glucose transport [118] with an increase in
glucose consumption [120–122]. Enzyme lactate dehydro-
genase (LDH) isoform 5 that favours lactate production is
preferentially expressed in astrocytes, as well as the lactate
transporters MCT 1 and 4 that have low affinity to lactate
[123, 124], and astrocytes and endothelial cells express glucose
transporter 1 (GLUT1). On the other hand, Glu decreases
glucose transport in neurons [125], neurons express preferen-
tially isoform 1 of the LDH that favours the lactate conversion
to pyruvate and MCT 2, a transporter with high affinity
to lactate [126], and express glucose transporter 3 (GLUT3)
[127, 128].

8. Clinical Implications

It has been documented that loss of glial cells-dependent Glu
homeostasis is a prerequisite for excitotoxicity. Glu release
from astrocytes has clear pathophysiological implications,
ranging from ischemic lesion such as stroke, to white matter
injury through demyelinating disorders like multiple sclero-
sis, to dementias such as Alzheimer’s and Huntington dis-
eases [129]. Although the causative role of aberrant glutamate
uptake in these diseases is not always supported by published
data, downregulation of GLAST and GLT-1 expression has
been correlated with cognitive deficits associated with the
diseases mentioned before [130]. Decrease expression and
function of GLAST and GLT-1 also correlates with cognitive
deficits observed in heavy metal exposure, as lead (Pb) and
methylmercury [131]. The reduced GLT-1 expression seen in
ALS, schizophrenia,mood and anxiety disorders, Alzheimer’s
disease, brain injury, glaucoma, HIV-associated dementia,
and addition is regulated at two levels, transcriptional and
during mRNA maturation (splicing) [132]; for example, in
ALS an abnormal splicing of Glu transporters mRNA which
results in truncated mRNA species has been demonstrated
[133]. Furthermore, aberrant Glu transporters expression and
function are common to gliomas in order to favour their own
growth, invasion, and survival [134], favouring the notion of
protein repertoire regulation in glial cells.

9. Conclusion

Glial cells sense glutamatergic synaptic activity through Glu
receptors and transporters and change their protein reper-
toire regulating transcription as well as translation of proteins
critically involved in their continuous molecular dialogue
with neurons. The Glu/Gln and the astrocyte-neuron lactate
shuttles are the biochemical signature of coupling and are
summarized in Figure 1. Much is left to be learned about the
fine regulation of glutamatergic neurotransmission but one
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Figure 1: Model of glutamatergic synapses with the role of the three components, presynaptic neuron, postsynaptic neuron, and glial cell.
Through the activation of glutamatergic receptors and transporters expressed in glial cells, these cells sense synaptic activity and regulate
their protein repertoire through transcriptional and translational regulation, as well as translocation to plasmatic membrane. Some of the
main contributions of glial cells to glutamatergic neurotransmission include the astrocyte-neuron lactate shuttle and Glu recycling through
the Glu/Gln cycle.

thing is for sure that glial cells have an active participation in
this process.
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“Transient focal cerebral ischemia significantly alters not only
EAATs but alsoVGLUTs expression in rats: relevance of changes
in reactive astroglia,” Journal of Neurochemistry, vol. 113, no. 5,
pp. 1343–1355, 2010.

[78] N. C. Danbolt, “Glutamate uptake,” Progress in Neurobiology,
vol. 65, no. 1, pp. 1–105, 2001.

[79] V. Eulenburg and J. Gomeza, “Neurotransmitter transporters
expressed in glial cells as regulators of synapse function,” Brain
Research Reviews, vol. 63, no. 1-2, pp. 103–112, 2010.

[80] W.-H. Hu, W. M. Walters, X.-M. Xia, S. A. Karmally, and J. R.
Bethea, “Neuronal glutamate transporter EAAT4 is expressed
in astrocytes,” Glia, vol. 44, no. 1, pp. 13–25, 2003.

[81] H. Tang, E. Hornstein, M. Stolovich et al., “Amino acid-
induced translation of TOP mRNAs is fully dependent on
phosphatidylinositol 3-kinase-mediated signaling, is partially
inhibited by rapamycin, and is independent of S6K1 and rpS6
phosphorylation,”Molecular andCellular Biology, vol. 21, no. 24,
pp. 8671–8683, 2001.

[82] R. P. Shank and G. L. Campbell, “Glutamine, glutamate and
other possible regulators of alpha-ketoglutarate and malate
uptake by synaptic terminals,” Journal of Neurochemistry, vol.
42, no. 4, pp. 1162–1169, 1984.

[83] Z. Mart́ınez-Lozada, A. M. Guillem, M. Flores-Méndez et
al., “GLAST/EAAT1-induced Glutamine release via SNAT3 in
Bergmann glial cells: evidence of a functional and physical
coupling,” Journal of Neurochemistry, vol. 125, no. 4, pp. 545–
554, 2013.

[84] W. A. Fairman, R. J. Vandenberg, J. L. Arriza, M. P. Kavanaugh,
and S. G. Amara, “An excitatory amino-acid transporter with
properties of a ligand-gated chloride channel,” Nature, vol. 375,
no. 6532, pp. 599–603, 1995.

[85] S. Duan, C. M. Anderson, B. A. Stein, and R. A. Swanson,
“Glutamate induces rapid upregulation of astrocyte glutamate

transport and cell-surface expression of GLAST,”The Journal of
Neuroscience, vol. 19, no. 23, pp. 10193–10200, 1999.
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